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Theorem 1 (Argument Principle). Let C be a closed contour and C encloses a domain U . Let f
be meromorphic in U with poles pi (i=1,...,n) and zeros zj (j=1,...,m), where pi and zj are distinct
and inside U , then

1

2πi

∫
C

f ′

f
dz =

m∑
i=1

n(C, zi)−
n∑
j=1

n(C, pj)

Remark : n(C, zi) denotes the order of the poles or multiplicity of zeros inside the contour.

Remark : It can be viewed as
1

2πi

∫
z∈C

df

f − 0
. It is the winding number of f around the point

0 when z travel along the contour C. It is similar to
1

2πi

∫
|z−a|=1

dz

z − a
= 1.

For example, it can be observed by Argument Principle or drawing a diagram that the zn has a
winding number of n around the point 0 when z travel along the unit circle.

Theorem 2 (Rouché’s Theorem (version 1)). Let C be a closed contour and C encloses a domain
U . Let f and g be analytic in U and on C. Suppose that |f | > |g| on C, then f and f + g have the
same number of zeros inside C.

Remark : Actually the Rouché’s Theorem comes from the argument principle, but we do not require
that the zeros of f and f + g are inside the domain U as in argument principle. It is because the
strict inequality on C exclude that the zeros are on C.

Remark : Theorem 2 and 3 only tell to you that the numbers of roots of f and f + g are the
same, but their roots may not be the same!

Remark : You should be careful that the inequality must be strict and it is enough to hold only on
C.

Theorem 3 (Rouché’s Theorem (more powerful version)). Let C be a closed contour and C encloses
a domain U . Let f and g be analytic in U and on C. Suppose that |f |+ |g| > |f + g| on C, then f
and g have the same number of zeros inside C.

Remark : Version 1 is powerful enough in many cases, but you can see that the second version is
more powerful. We will mainly apply version 1.

Example 1. Find the number of roots of the equation 2z5− 6z2 + z+ 1 = 0 inside the circle |z| = 2.

In the hypothesis of Rouché’s theorem, we want to find a polynomial to dominate the other
polynomial. Since the circle is C = {|z| = 2}, the term with largest power would dominate the other
term. Hence we let f = 2z5 and g = −6z2 + z + 1. On C, we check that

|f | = 64 and |g| ≤ 6(4) + 2 + 1 = 27.

Thus |f | > |g| on C, f has 5 roots inside C. Therefore, f + g = 2z5 − 6z2 + z + 1 = 0 has 5 roots
inside C.

Example 2. Find the number of roots of the equation 2z5− 6z2 + z+ 1 = 0 inside the circle |z| = 1.

In this time, since the circle is C = {|z| = 1}, the term with largest coefficient would dominate
the other term. Hence we let f = −6z2 and g = 2z5 + z + 1. On C, we check that

|f | = 6 and |g| ≤ 2 + 1 + 1 = 4.

Thus |f | > |g| on C, f has 2 roots inside C. Therefore, f + g = 2z5 − 6z2 + z + 1 = 0 has 2 roots
inside C.
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Example 3. Find the number of roots of the equation f = z4 + z3 + 4z2 + 2z + 3 = 0 in right half
plane (Re(z)> 0 ).

We observed that polynomial with real coefficients have complex roots in conjugate pairs. Also
the coefficients are positive, so the polynomial has no positive real roots. To apply argument princi-
ple, we should first choose a suitable contour. We would like to choose right half circle with radius
R (denoted by C )to pretend the right half plane.

Due to the hypothesis of argument principle, the zero should not be on C. We need to check that
f has no purely imaginary roots. Let z = yi, then

f = y4 − 4y2 + 3 + i(2y − y3).

If f = 0, we have y = 0 or ±
√

2 from the imaginary part, but f 6= 0 by substituting these values of
y into the real part of f . Since the roots must be of finite value, we can choose R large enough such
that the roots are not on the circular arc of C.

We take a contour C to be a right half circle with radius R,∫
C

f ′

f
dz =

∫ π/2

−π/2
+

∫ −Ri
Ri

f ′

f
dz.

For the first integral, z = Reiθ∫ π/2

−π/2

f ′

f
dz =

∫ π/2

−π/2

4z3 + 3z2 + 8z + 2

z4 + z3 + 4z2 + 2z + 3
Reiθidθ

= i

∫ π/2

−π/2

4z4 + 3z3 + 8z2 + 2z

z4 + z3 + 4z2 + 2z + 3
dθ

= i

∫ π/2

−π/2

4 + 3
z

+ 8
z2

+ 2
z3

1 + 1
z

+ 4
z2

+ 2
z3

+ 3
z4

dθ

→ i

∫ π/2

−π/2
4dθ = 4πi as R→∞

For the second integral, ∫ −Ri
Ri

f ′

f
dz =

∫ −Ri
Ri

df

f − 0
.

To evaluate this integral, it is hard to compute it directly. However we know that this integral is
the winding number of f around 0, that is, the times f winds the point 0 from −Ri to Ri. If we set
z = yi, we have f = y4 − 4y2 + 3 + i(2y − y3). We find all the zero of the real and imaginary parts,
that is y = ±1,±

√
3 and y = 0,±

√
2.

y −∞ −
√

3 −
√

2 -1 0 1
√

2
√

3 ∞
Re(f) + 0 - 0 + 0 - 0 +
Im(f) 0 * + 0 - 0 + 0 - 0 *

Remark* : It is not really a zero, just for simplicity. But we can see that tan θ =
Im(f)

Re(f)
is very small

at that 2 points.

Thus,
1

2πi

∫ −Ri
Ri

f ′

f
dz → −2 as R → ∞. Combining our results,

∫
C

f ′

f
dz → 0 as R → ∞, which

implies that there is no root in the right half plane.
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Exercise: If λ > 1, find the number of roots of the equation e−z + z − λ = 0 in the right half
plane.

Good luck to your exam! ><
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